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This paper addresses local and global bifurcations that may appear in electrical power systems,
such as DC microgrids, which recently has attracted interest from the electrical engineering
society. Most sources in these networks are voltage-type and operate in parallel. In such con-
figuration, the basic technique for stabilizing the bus voltage is the so-called droop control.
The main contribution of this work is a codimension-two bifurcation analysis of a small DC
microgrid considering the droop control gain and the power processed by the load as bifurcation
parameters. The codimension-two bifurcation set leads to practical rules for achieving a robust
droop control design. Moreover, the bifurcation analysis also offers a better understanding of
the dynamics involved in the problem and how to avoid possible instabilities. Simulation results
are presented in order to illustrate the bifurcation analysis.

Keywords : DC microgrids; droop control; constant power load; Hopf bifurcation; Takens–
Bogdanov bifurcation.

1. Introduction

Microgrids are complex electrical circuits with mul-
tiple sources and loads interacting [Boroyevich
et al., 2013; Guerrero et al., 2011]. It is a new
paradigm for the electrical power system due to the
presence of power converters instead of the usual
synchronous machines with very large inertia. One
of the advantages of microgrids, comparing with
the classical electrical power system, is the pres-
ence of several sources, so the energy generation is
distributed throughout the system, which makes it

more reliable. The common approach to the micro-
grid stability analysis focuses on model lineariza-
tion of each system element [Radwan & Mohamed,
2012; Lu et al., 2014]. A different approach that
uses large-signal stability analysis is developed in
[Du et al., 2013]. Other related works where bifurca-
tion analysis techniques were applied can be found
in [Xiong et al., 2013a, 2013b; Gavagsaz-Ghoachani
et al., 2013]. In these papers, different microgrid
structures and multioperating modes were consid-
ered and, despite offering a more precise model,
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Fig. 1. The DC microgrid case study.

the number of equations becomes too large even for
small microgrids and thus increases the complexity
of the system analysis. This paper offers a different
way to verify the system stability by neglecting the
internal dynamics of each element and focusing only
on the dynamics of the connection between them.
Moreover, by using bifurcation analysis techniques
it is possible to establish a safe power operating
region and to design appropriate protection mecha-
nisms in order to enhance the system reliability and
stability.

One of the major issues in microgrids is how
to share the power of two or more energy sources
having a common load, also known as load sharing
problem. The power that each source provides to
the load is different, unless the impedance connect-
ing the source to the load is equal. The problem
of unbalanced load sharing goes from the stress of
some converters to the acting of the electrical pro-
tections due to circulating currents, i.e. currents in
the opposite direction of the desired power flow. For
these reasons, it is interesting to equalize the power

Fig. 2. DC microgrid case study showing the power converters.
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driven by each source through a control technique
called droop control. This control adds a virtual
resistance in series with each voltage source [Drag-
icevic et al., 2014]. If the virtual resistance pre-
vails over any impedance connected to each source,
then the power shared among the sources is approx-
imately equal. From the control perspective, this
approach increases the system damping.

The microgrid case study is a simple one: two
sources, one renewable source (PhotoVoltaic sys-
tem — PV) and one load (see Fig. 1). Notice that
the arrows in Fig. 1 stand for the direction of the
power flow for each element. Besides, Fig. 2 shows
the electrical circuits of the DC microgrid from
Fig. 1.

In this paper, theoretical analysis is provided
for some local bifurcations along with numerical
analysis regarding the study of global bifurcations.
Additionally, the whole microgrid as illustrated in
Fig. 2 is simulated to better understand some impli-
cations due to the modeling process. A similar
problem as that presented here, but from a power
electronics point of view, can be seen in [Tahim
et al., 2015] and for a general overview of the sub-
ject, see [Planas et al., 2013].

The paper is organized as follows. In Sec. 2,
the mathematical model of the microgrid case study
is presented. Some local bifurcations that appear
in the proposed model are analyzed in Sec. 3.
Global bifurcation analysis is presented in Sec. 4.
The full microgrid model is compared with the
reduced model adopted in this work in Sec. 5.
Section 6 is dedicated to discuss the shortcomings
of the reduced model. Simulation results in order
to validate the bifurcation analysis are presented
in Sec. 7.

2. Equivalent Microgrid Modeling

In this microgrid case study, one of the sources is a
DC-DC power converter driven by a battery pack
and the other one is an AC-DC power converter
connected to the main grid. Both of these sources
are controlling their output voltage, so ideally they
are voltage sources. The PV source behaves like a
power source, injecting piecewise constant power to
the microgrid, and thus it is modeled as a Constant
Power Source (CPS). This source is dependent on
the weather, so the power injected to the microgrid
varies in steps when the weather changes.

A DC-DC power converter controlling the out-
put voltage across a resistance is considered as
the system nonlinear load. In this sense, the input
terminals of this controlled power converter can
be modeled as a Constant Power Load (CPL)
[Onwuchekwa & Kwasinski, 2010; Zhang & Yan,
2011; Magne et al., 2012]. The PV source has a
similar behavior as the CPL, but injecting con-
stant power to the microgrid instead of draining
power. The CPS and CPL characteristic curves are
depicted in Fig. 3. There are three operating regions
for the equivalent load (CPS and CPL). The region
III, which is nonlinear, is the designed operating
region. The equivalent load might operate in regions
I and II which are predominantly linear.

In this work, it is assumed that the static curves
of the CPL and CPS have the following character-
istics: (i) Vth has a constant value regardless of the
CPL power; (ii) although Vpv is a function of the
CPS power, it is assumed that the PV power is con-
stant, hence Vpv is constant; (iii) Vth > Vpv.

The voltage sources internal model and their
corresponding simplified models are illustrated in
Figs. 4 and 5. These voltage sources are modeled by

Fig. 3. CPS and CPL modeled as piecewise static characteristic curves in (Vo, Io)-plane.
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Fig. 4. The simplification modeling process of the DC-DC
voltage source.

Fig. 5. The simplification modeling process of the AC-DC
voltage source.

an ideal source (Vs) with a resistance in series (Rd),
and this resistance is the droop control parameter.
The idea behind the simplification modeling process
is that there are two different time scales associ-
ated with the microgrid dynamics: (i) slow internal
dynamics of the sources; (ii) fast dynamics of the
transmission line and CPL loads. The DC micro-
grid equivalent circuit can be seen in Fig. 6. The
transmission lines in the microgrid are modeled by
resistive and inductive elements (R1, R2, L1 and
L2), with the values of the pair {R2, L2} two times
greater than {R1, L1}. Also, the CPS and CPL have
filter capacitors connected in their input terminals

Fig. 6. The microgrid equivalent circuit.

(from the microgrid point of view) and these capaci-
tors can be combined into a single equivalent capac-
itance (Co).

The DC microgrid under consideration is
described by the following equations

L1
di1
dt

= −(R1 + 2Rd)i1 + Rdi2,

L2
di2
dt

= Rdi1 − (R2 + Rd)i2 − vo + Vs,

Co
dvo

dt
= i2 − io,

(1)

where io = icpl + icps. The currents icpl and icps are
defined as

icpl =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pcpl

vo
, if vo ≥ Vth

vo

Rth
, if vo < Vth

(2)

icps =

⎧
⎪⎪⎨

⎪⎪⎩

−Pcps

vo
, if vo ≥ Vpv

−Imax, if vo < Vpv,

(3)

where Pcpl and Pcps stand for the CPL and CPS
powers respectively; Vth and Vpv are the threshold
voltages for the load and PV respectively, as shown
in Fig. 3.

The AC-DC current source (iac = i1) and the
DC-DC current source (idc = i2 − i1) are defined in
the interval (iac, idc) ∈ (−∞, Vs/Rd]. The bus volt-
age vo is defined only for positive values (vo ∈ R+).

The linear region of the CPL is described by
Rth = V 2

th/Pcpl, and the constant region of the
CPS by Vpv = Pcps/Imax. When both the CPL
and CPS are operating in the nonlinear region,
Po = Pcpl − Pcps. Although most of the analytical
bifurcation analysis focuses on the nonlinear region
III, global bifurcations covering more than one oper-
ating region are analyzed by numerical methods. In
this analysis, all the parameters are fixed except the
droop gain, Rd, regarded as a bifurcation param-
eter. Furthermore, it is interesting to analyze the
system to different load power values (Po). By fix-
ing the CPS power, the total power Po becomes the
second bifurcation parameter.

The equilibrium point (I1, I2, Vo) of (1) is
defined by

I1 =
Rd

R1 + 2Rd

Vs − Vo

Req
, I2 =

Vs − Vo

Req
,
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with

Req =
R1R2 + R1Rd + 2R2Rd + R2

d

R1 + 2Rd
. (4)

Note that Vo varies according to the region of oper-
ation. In region III, this voltage is given by

V 2
o − VsVo + ReqPo = 0, (5)

therefore, there are two equilibrium points,
(I1, I2, V +

o ) and (I1, I2, V −
o ), where V ±

o is given by

V ±
o =

V s

2
±

√
V 2

s

4
− ReqPo, (6)

provided that V 2
s/4 ≥ ReqPo, i.e. the maximum

power the system can handle is dictated by

Pmax =
V 2

s

4Req
. (7)

In region II, system (1) has only one equilib-
rium point with

Vo =
Vs

2
Rth

Rth + Req

+

√
Rth

Rth + Req

(
V 2

s

4
Rth

Rth + Req
+ ReqPcps

)
,

(8)

since the other root is outside the domain of vo

(vo ∈ R+). In region I, the system also has only
one equilibrium point with

Vo =
RthReq

Rth + Req

(
Imax +

Vs

Req

)
. (9)

The number of equilibria changes when the load
goes from one region to another, and it is expected
that some global bifurcations appear. A diagram of
the evolution of the equilibrium points V +

o and V −
o

as the parameter Pcpl varies is shown in Fig. 7(a).
This picture illustrates the changes on system’s
equilibria that the transition from regions II to III
causes in the system model. The area between the
vertical dashed-dot lines [Fig. 7(a)] is the only area
where there exist three equilibrium points. Another
way to see the relationship between the number of
equilibrium points and CPL power is to plot a set
of static curves for different Pcpl values together
with the equilibrium equation, as can be seen in
Fig. 7(b). It shows that for Pcpl = 33 kW there
are three equilibrium points, but for other values
of power (Pcpl = 10 kW and Pcpl = 55 kW) there is
only one.

(a)

(b)

Fig. 7. Equilibrium points of system (1) in (a) (Pcpl, Vo)-
plane and (b) (Vo, Io)-plane.

3. Local Bifurcation Analysis

In this section, standard local bifurcation analysis
is developed for system (1). This system is normal-
ized so that any change of variables can be defined
disregarding the physical dimension of the process.
The relation between the normalized and original
variables are

ι1 =
ωbL2

Vs
i1, ι2 =

ωbL2

Vs
i2, νo =

vo

Vs
,

with time t = τ
√

L2Co. Defining the new parameters

ωb =
1√

L2Co
, r1 =

R1

ωbL2
, r2 =

R2

ωbL2
,

po = Po
ωbL2

V 2
s

, pcps = Pcps
ωbL2

V 2
s

,

the normalized model is given by

dι1
dτ

= −2
(r2

2
+ 2rd

)
ι1 + 2rdι2,

1650028-5
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dι2
dτ

= rdι1 − (r2 + rd)ι2 − νo + 1,

dνo

dτ
= ι2 − ιo,

(10)

with

ιo =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

po

νo
, if νo ≥ Vth

νo

rth
− pcps

νo
, if Vpv ≤ νo < Vth

νo

rth
− ιmax, if νo < Vpv,

(11)

where Vth = Vth/Vs and Vpv = Vpv/Vs. The nor-
malized equilibria are given by (I1,I2,Vo). Note
that, the normalized equilibria are assigned by cal-
ligraphy symbols and the denormalized equilibria
by roman symbols.

A new change of variables is applied to (10)
in order to translate the equilibrium points of this
system to the origin as follows

y1 = ι1 − I1, y2 = ι2 − I2, y3 = νo − Vo

and by separating the linear part from the nonlinear
one, the differential equations become

dy1

dτ
= −(r2 + 4rd)y1 + 2rdy2,

dy2

dτ
= rdy1 − (r2 + rd)y2 − y3,

dy3

dτ
= y2 + goy3 − go

y2
3

y3 + Vo
,

(12)

with go = po/V2
o.

In matricial form, the model is given by ẏi =
Aijyj + Fi(y3), with i, j ∈ {1, 2, 3} representing
the components of a vector or matrix, and ẏ is
the derivative with respect to normalized time.
Repeated indices indicate summation. The linear
part of (12) is

Aij =

⎛

⎜⎝
−(r2 + 4rd) 2rd 0

rd −(r2 + rd) −1
0 1 go

⎞

⎟⎠,

whereas the nonlinear part is

Fi(y3) =
y2

3

Vo + y3

⎛

⎝
0
0

−go

⎞

⎠.

Local bifurcations found for this microgrid
model can be classified by analyzing the coefficients
of the characteristic polynomial:

∆(λ) = λ3 + a2λ
2 + a1λ + a0, (13)

with

a2 = 2r2 + 5rd − go,

a1 = 1 + req(r2 + 4rd) − go(2r2 + 5rd),

a0 = (r2 + 4rd)(1 − goreq)

and req = (r2
2 + 5r2rd + 2r2

d)/(r2 + 4rd).
There are three local bifurcations that can be

found by analyzing the equilibria of (5) and the
coefficients of (13): (i) saddle-node of equilibrium
points (SN), (ii) Hopf bifurcation (HB) and (iii)
Takens–Bogdanov (TB). Based on these coefficients
it is possible to find the system of normal form for
each bifurcation.

The set of codimension-two local bifurcations
in (Po, Rd)-plane with Po and Rd, with the original
bifurcation parameters of system (1), is depicted
in Fig. 8.

The Hopf bifurcation for the normalized system
is found by solving a1a2 = a0 for rd and po, and for
the saddle-node, (7) is used to generate the curve,
valid for the original system.

3.1. Saddle-node bifurcation

There are two equilibrium points (V+
o ,V−

o ) in the
nonlinear region whenever po ≤ pmax, one stable
branch and the other is unstable. Both branches
join at the maximum power point where the saddle-
node bifurcation occurs (a0 = 0 when po = pmax).
The equilibrium V−

o corresponds to the unstable

Fig. 8. Codimension-two bifurcation set for Po and Rd
as bifurcation parameters assuming that the other system
parameters are given in Table 1 of Sec. 7.
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equilibrium branch since a0 < 0, and V+
o is the sta-

ble branch because a0 > 0. As the load static curve
is piecewise (see Fig. 3), the unstable branch does
not exist for all values of po, i.e. whenever the volt-
age Vo becomes too small, the load characteristic
changes at νo = Vth and νo = Vpv, or vo = Vth and
vo = Vpv for the original equations as shown in (2)
and (3).

The normal form for the saddle-node bifurca-
tion can be obtained by nonlinear transformations
valid locally at the bifurcation point. The numerical
values for the parameters rd and po can be selected
using Fig. 8. So at saddle-node bifurcation point,
the characteristic polynomial is

∆sn(λ) = λ(λ2 + a2λ + a1)

= λ(λ + σ)(λ + ζ).

The parameters σ and ζ are

σ =
1
2

{
2r2 + 5rd − go

+
√

g2
o + 4gor2 + 10gord + 17r2

d − 4
}
,

ζ =
1
2

{
2r2 + 5rd − go

−
√

g2
o + 4gor2 + 10gord + 17r2

d − 4
}
,

where σ and ζ are real and positive (for instance,
selecting a large value for rd), thus Hopf bifurcation
does not occur. System (12) can be expressed in the
Jordan canonical form through the transformation
yi = Tijxj:

ẏi = Aijyj + Fi(y3)

ẋi = T−1
ij AjkTklxl + T−1

ij Fj(T3jxj)

ẋi = Jijxj + sif(x),

where

Jij =

⎛

⎜⎝

−σ 0 0

0 −ζ 0

0 0 0

⎞

⎟⎠, si =

⎛

⎜⎝
s1

s2

s3

⎞

⎟⎠

and f(x) is given by

f(x) =
(x1 + x2 + x3)2

Vo + x1 + x2 + x3
.

The transformation Tij is

Tij =

⎛

⎜⎜⎜⎜⎜⎝

−2rd(σ + go)
r2 + rd − σ

−2rd(ζ + go)
r2 + rd − ζ

− 2rdgo

r2 + rd

−σ − go −ζ − go −go

1 1 1

⎞

⎟⎟⎟⎟⎟⎠
.

In this analysis only the parameter s3, given by

s3 = − (r2 + 4rd)(go + r2 + 4rd)
−g2

o(2r2 + 5rd) + go(−3r2rd − 16r2
d + 1) + r3

2 + 9r2
2rd + 22r2r2

d + 8r3
d

,

is necessary. Notice that Fi is a vector function,
whereas f(x) is just a scalar function (T−1

ij Fj = sif).
Expanding f(x) into a Taylor series and apply-

ing the center manifold theorem [Guckenheimer &
Holmes, 1983], which is used to reduce the order
of (12), it is possible to reach the following result,
by neglecting high order terms,

f(x) =
1
Vo

x2
3 + O(3).

The normal form of the microgrid model at the
saddle-node bifurcation point is

ẋ3 =
s3

Vo
x2

3 + O(3). (14)

The parameter s3 is negative implying that for
positive initial conditions, x3 converges to the ori-
gin, and for negative initial conditions, the system
diverges.

3.2. Hopf bifurcation

In order to analyze the Hopf bifurcation, the the-
ory of normal forms is used to identify the type
of limit cycle (unstable or stable) that appears in
system (12), when the condition a1a2 = a0, with
a0 > 0 and a2 > 0 is satisfied.

The characteristic polynomial at the Hopf
bifurcation point is

∆h(λ) = (λ + σ)(λ2 + ω2
h),

σ = 2r2 + 5rd − go,

ω2
h = 1 + r2

2 + 5r2rd + 2r2
d − go(2r2 + 5rd).

Notice that, the parameter σ used before for the
saddle-node normal form is utilized again for the
Hopf normal form. Consequently, in this section
this parameter has a different value. The same
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consideration is used for the Takens–Bogdanov normal form. This parameter always represents a stable
eigenvalue regardless of its value.

System (12) can be transformed in the Jordan canonical form by

Tij =

⎛

⎜⎜⎜⎜⎜⎝

2rd(2r2 + 5rd)
r2 + rd − go

2rd{(r2 + 4rd)(ωh − go) + ωh(ωh + go)}
(r2 + 4rd)2 + ω2

h

−5rd − 2r2 −go + ωh

1 1

−2rd{(r2 + 4rd)(ωh + go) − ωh(ωh − go)}
(r2 + 4rd)2 + ω2

h

−go − ωh

1

⎞

⎟⎟⎟⎟⎟⎠
,

which results in ẋi = Jijxj + κif(x), where

Jij =

⎛

⎜⎝

−σ 0 0

0 0 −ωh

0 ωh 0

⎞

⎟⎠, κi =

⎛

⎜⎝
κ1

κ2

κ3

⎞

⎟⎠

and

f(x) =
(x1 + x2 + x3)2

Vo + x1 + x2 + x3
,

κ1 = −
go(g2

o + ω2
h)(go − r2 − rd)

(go + r2 + 4rd){g2
o − 2go[2r2 + 5rd] + 4r2

2 + 20r2rd + 25r2
d + ω2

h}
,

κ2 =
go(2r2 + 5rd)

2ωh(go + r2 + 4rd){g2
o − 2go[2r2 + 5rd] + 4r2

2 + 20r2rd + 25r2
d + ω2

h}

× {g2
o(r2 + 4rd + ωh) − go(2r2

2 + 13r2rd + 20r2
d − 3rdωh + 2ω2

h)

−ωh(2r2
2 + 13r2rd − r2ωh + 20r2

d − rdωh + ω2
h)},

κ3 = − go(2r2 + 5rd)
2ωh(go + r2 + 4rd){g2

o − 2go[2r2 + 5rd] + 4r2
2 + 20r2rd + 25r2

d + ω2
h}

× {g2
o(r2 + 4rd − ωh) − go(2r2

2 + 13r2rd + 20r2
d + 3rdωh + 2ω2

h)

+ ωh(2r2
2 + 13r2rd + r2ωh + 20r2

d + rdωh + ω2
h)}.

The nonlinear part, f(x), can be expanded into a Taylor series up to the cubic terms, because high
order terms are not necessary for the Hopf bifurcation analysis. Thus, only the following terms of f(x) are
considered

f(x) =
1
Vo

{x2
2 + x2

3 + 2x2x3 + 2x1(x2 + x3)} +
1
V2

o
{x3

2 + x3
3 + 3x2

2x3 + 3x2x
2
3} + O(4).

Applying the center manifold theorem, x1 = h(x2, x3), the quasilinear partial differential equation for
the map h is given by

N (x) =
∂h

∂x2
[−ωhx3 + κ2f(x)] +

∂h

∂x3
[ωhx2 + κ3f(x)] + σh − κ1f(x) = 0. (15)
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The map h can be approximated to

h = α20x
2
2 + α11x2x3 + α02x

2
3 + O(3).

To find the coefficients αij is necessary to solve
N (x) until the second order terms. The parameters
αij can be found through

ωh

(
x2

∂h

∂x3
− x3

∂h

∂x2

)
+ σh − κ1f2(xi) = 0, (16)

where f2(x) represents the quadratic terms of f(x):

f(x) = f2(x) + f3(x) + O(4)

f2(x) =
x2

2 + x2
3 + 2x2x3

Vo

and the cubic term is

f3(x)=−x3
2 + x3

3 + 3x2
2x3 + 3x2x2

3

V2
o

+
2(x2 + x3)

Vo
h.

The coefficients αij are given by

α20 =
κ1(σ2 − 2σωh + 4ω2

h)
σVo(4ω2

h + σ2)
,

α11 =
2κ1σ

Vo(4ω2
h + σ2)

,

α02 =
κ1(σ2 + 2σωh + 4ω2

h)
σVo(4ω2

h + σ2)
.

In the center manifold, ẋ2 and ẋ3 are

ẋ2 = −ωhx3 +
κ2

Vo
{x2

2 + x2
3 + 2x2x3}

+
κ2

V2
o

{[
−1 +

2κ1(σ2 − 2σωh + 4ω2
h)

(4ω2
h + σ2)σ

]
x3

2

+
[
−3 +

2κ1(3σ2 − 2σωh + 4ω2
h)

(4ω2
h + σ2)σ

]
x2

2x3

+
[
−3 +

2κ1(3σ2 + 2σωh + 4ω2
h)

(4ω2
h + σ2)σ

]
x2x

2
3

+
[
−1 +

2κ1(σ2 + 2σωh + 4ω2
h)

(4ω2
h + σ2)σ

]
x3

3

}

+O(4), (17)

ẋ3 = ωhx2 +
κ3

Vo
{x2

2 + x2
3 + 2x2x3}

+
κ3

V2
o

{[
−1 +

2κ1(σ2 − 2σωh + 4ω2
h)

(4ω2
h + σ2)σ

]
x3

2

+
[
−3 +

2κ1(3σ2 − 2σωh + 4ω2
h)

(4ω2
h + σ2)σ

]
x2

2x3

+
[
−3 +

2κ1(3σ2 + 2σωh + 4ω2
h)

(4ω2
h + σ2)σ

]
x2x

2
3

+
[
−1 +

2κ1(σ2 + 2σωh + 4ω2
h)

(4ω2
h + σ2)σ

]
x3

3

}

+O(4). (18)

To apply the normal form for the Hopf bifurca-
tion, these equations can be described in complex
form, z = x2 + jx3, with z = x2 − jx3 being the
complex conjugate of z (j =

√
−1). Equations (17)

and (18) become

ż = jωhz + f2 + f3 + O(4),

f2 = a20z
2 + a11zz + a02z

2,

f3 = b30z
3 + b21z

2z + b12zz2 + b03z
3.

aij and bij are complex parameters given by

a20 =
κ3 − jκ2

2Vo
, (19)

a11 =
κ2 + jκ3

Vo
, (20)

a02 =
−κ3 + jκ2

2Vo
(21)

and

b30 = −(1 + j)(κ2 + jκ3)(2κ1 − σ − j2ωh)
4V2

o(σ + j2ωh)
, (22)

b21 =
(1 + j)(κ2 + jκ3)(−j6κ1σ + 8κ1ωh + j3σ2 − 6σωh)

4σV2
o(σ + j2ωh)

, (23)

b12 =
(1 + j)(κ2 + jκ3)(6κ1σ − j8κ1ωh − 3σ2 + j6σωh)

4σV2
o(σ − j2ωh)

, (24)

b03 =
(1 + j)(κ3 − jκ2)(−2κ1 + σ − j2ωh)

4V2
o(σ − j2ωh)

. (25)
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The Hopf normal form can be found by trans-
forming z to

z = w + h2(w, w), (26)

so the dynamics of w is

ż = ẇ +
∂h2

∂w
ẇ +

∂h2

∂w
ẇ

ż =
(

1 +
∂h2

∂w

)
ẇ +

∂h2

∂w
ẇ

ẇ =
(

1 +
∂h2

∂w

)−1 (
ż − ∂h2

∂w
ẇ

)
.

Substituting ż, ẇ becomes

ẇ =
[
1 +

∂h2

∂w

]−1

×
[
jωh(w + h2) + f2 + f3 −

∂h2

∂w
ẇ

]
+ O(4).

(27)

The map h2 is quadratic, h2 = c20w2 + c02w2 +
c11ww, so replacing (26) in f2 and f3 gives

f2 = a20w
2 + a11ww + a02w

2

+ (2a20wh2 + a11wh2 + a11wh2 + 2a02wh2),

f3 = b30w
3 + b21w

2w + b12ww2 + b03w
3.

It is necessary to rearrange these polynomials prop-
erly, considering now that the last part of f2 is of
cubic order. Thus,

g2 = a20w
2 + a11ww + a02w

2

g3 = b30w
3 + b21w

2w + b12ww2 + b03w
3

+ 2a20wh2 + a11wh2 + a11wh2 + 2a02wh2,

wherein g2 is a second order polynomial and g3 a
third order one (f2 + f3 = g2 + g3).

Using the definition of h2, g3 becomes

g3 = (b30 + 2a20c20 + a11c02)w3 + (b21 + 2a20c11

+ a11c11 + a11c20 + 2a02c02)w2w

+ (b12 + 2a20c02 + a11c20 + a11c11

+ 2a02c11)ww2 + (b03 + a11c02 + 2a02c20)w3,

that can be written as g3 = d30w3 + d21w2w +
d12ww2 + d03w3.

The term [1 + ∂h2/∂w]−1 of (27) can be
expanded into a Taylor series:

[
1 +

∂h2

∂w

]−1

= 1 − (2c20w + c11w) + (4c2
20w

2

+ c2
11w

2 + 4c20c11ww) + O(3)

= 1 − ∂h2

∂w
+ m2 + O(3),

where ∂h2/∂w is first order and m2 is quadratic.
The dynamics of w is not known, but it has the

following form:

ẇ = λw + n2 + n3 + O(4),

where λ = jωh. The mappings n2 and n3 are still
unknown and they correspond to the second and
third order nonlinear parts, respectively.

Based on (27), the required part of ẇ is
[
1 +

∂h2

∂w

]−1 ∂h2

∂w
ẇ

=
{

λ
∂h2

∂w
w

}
+

{
∂h2

∂w
n2 − λ

∂h2

∂w

∂h2

∂w
w

}

+O(4).

To cancel all the second order terms, n2 must be
null, therefore

ẇ = λw +
{

λh2 − λ
∂h2

∂w
w − λ

∂h2

∂w
w + g2

}

+
{

λm2w − λ
∂h2

∂w
h2 −

∂h2

∂w
g2

+λ
∂h2

∂w

∂h2

∂w
w + g3

}
+ O(4).

It follows that the second order terms can
be annihilated by choosing the coefficients of h2

according to

c20 =
a20

λ
, c02 = −a02

3λ
, c11 = −a11

λ
,

where the parameters aij are given by (19)–(21).
This is the solution of the homological equation:

λh2 − λ
∂h2

∂w
w − λ

∂h2

∂w
w + g2 = 0.

The remaining cubic terms are given by
{

λm2w − λ
∂h2

∂w
h2 −

∂h2

∂w
g2 + λ

∂h2

∂w

∂h2

∂w
w + g3

}

= g3,
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thus the nonlinear part has been simplified up to
the third order terms:

ẇ = λw + d30w
3 + d21w

2w + d12ww2

+ d03w
3 + O(4). (28)

The third order terms can be annihilated, with
the exception of w2w [Kuznetsov, 2004], by the fol-
lowing change of variables:

w = ξ + h3,

h3 = q30ξ
3 + q03ξ

3 + q12ξξ
2.

The dynamics of ξ is

ξ̇ = λξ + d21ξ
2ξ +

{
λh3 − λ

∂h3

∂ξ
ξ − λ

∂h3

∂ξ
ξ

+ d30ξ
3 + d12ξξ

2 + d03ξ
3

}
+ O(4). (29)

Choosing the coefficients qij as

q30 =
d30

2λ
,

q03 = −d03

4λ
,

q12 = −d12

2λ
,

then

ξ̇ = λξ + d21ξ
2ξ + O(4). (30)

Transforming (30) into cylindrical coordinates, ξ =
ρ exp(jθ) with dR

21 = Re{d21} and dI
21 = Im{d21},

it becomes

ρ̇ = dR
21ρ

3 + O(5),

θ̇ = ωh + dI
21ρ

2 + O(4),

where

dR
21 =

1
4σωhV2

o(σ2 + 4ω2
h)
{κ2ωh[2κ1(3σ2 − 2σωh + 8ω2

h) − 3(σ3 + 4σω2
h)]

+ κ3{ωh[2κ1(3σ2 + 2σωh + 8ω2
h) − 3(σ3 + 4σω2

h)] − 2κ3(σ3 + 4σω2
h)} + 2κ2

2(σ
3 + 4σω2

h)}, (31)

dI
21 = − 1

12σωhV2
o(σ2 + 4ω2

h)
{κ3[3ωh(−6κ1σ

2 + 4κ1σωh − 16κ1ω
2
h + 3σ3 + 12σω2

h)

+ 14κ3(σ3 + 4σω2
h)] − 3κ2{ωh[3(σ3 + 4σω2

h) − 2κ1(3σ2 + 2σωh + 8ω2
h)] + 4κ3(σ3 + 4σω2

h)}

+ 14κ2
2(σ

3 + 4σω2
h)}. (32)

The stability of the periodic orbit is given by
the real part of d21 which, in this case, is positive,
indicating a subcritical Hopf bifurcation. However,
there is a global bifurcation that limits the ampli-
tude of this unstable periodic orbit arising from the
Hopf bifurcation, for a given value of the parameter
po, as will be seen in Sec. 4.

3.3. Takens–Bogdanov bifurcation

The characteristic polynomial of the linear part
of the system at the point where the Takens–
Bogdanov bifurcation occurs is given by

∆tb(λ) = λ2(λ + σ),

σ = 2r2 + 5rd − go.

The conditions for the occurrence of the Takens–
Bogdanov bifurcation in (12) are

go =
r2 + 4rd

r2
2 + 5r2rd + 2r2

d

,

0 = 1 + r2
2 + 5r2rd + 2r2

d − go(2r2 + 5rd).

System (12) can be described in the Jordan canon-
ical form through the transformation (yi = Tijxj)

Tij =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

− 2rdgo

r2 + 4rd

2rd

(
1 − go +

go

r2 + 4rd

)

r2 + 4rd

2rd(2r2 + 5rd)
r2 + rd − go

−go 1 − go −2r2 − 5rd

1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.
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Using this transformation, the microgrid model becomes ẋi = Jijxj + kif(x), where

Jij =

⎛

⎜⎝

0 1 0

0 0 0

0 0 −σ

⎞

⎟⎠, ki =

⎛

⎜⎝
k1

k2

k3

⎞

⎟⎠,

and

f(x) =
(x1 + x2 + x3)2

Vo + x1 + x2 + x3
.

The relation between the original microgrid parameters and the ones for the Takens–Bogdanov normal
form are given by

k1 = −
go(2r2 + 5rd){g2

o(r2 + 4rd − 1) − go[2r2
2 + 13r2rd + rd(20rd + 3)] + 2r2

2 + 13r2rd + 20r2
d}

(go − 2r2 − 5rd)2(go + r2 + 4rd)
,

k2 =
g2

o(r2 + 4rd)(2r2 + 5rd)
(go − 2r2 − 5rd)(go + r2 + 4rd)

,

k3 = − g3
o(go − r2 − rd)

(go − 2r2 − 5rd)2(go + r2 + 4rd)
.

Now, applying the center manifold theorem, i.e.
x3 = h(x1, x2), and considering only the quadratic
terms, the system becomes

ẋ1 = x2 +
k1

Vo
(x2

1 + 2x1x2 + x2
2) + O(3), (33)

ẋ2 =
k2

Vo
(x2

1 + 2x1x2 + x2
2) + O(3). (34)

This pair of equations can be described in matri-
cial form as ẋi = Jijxj + kig(x), with g(x) = x2

1 +
2x1x2 + x2

2.
The normal form can be found by the following

change of variables

xi = wi + hi(w),

implying

ẋi =
(

δij +
∂hi

∂wj

)
ẇj,

where δij is the Kronecker delta. The dynamics of
the new variable wi is

ẇi = Jijwj +
{

Jijhj −
∂hi

∂wj
Jjkwk + kig(w)

}

+O(3), (35)

with the mapping hi given by

h1 = a10w
2
1 + a11w1w2, h2 = b10w

2
1 + b11w1w2.

For the Takens normal form, the coefficients aij

and bij are given by

a10 =
2k1 + k2

2Vo
, a11 =

k1

Vo
,

b10 =
k2

Vo
, b11 = b10,

resulting in
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẇ1 = w2 +
k1 + k2

Vo
w2

1 + O(3),

ẇ2 =
k2

Vo
w2

1 + O(3).

(36)

In order to choose the Bogdanov normal form, the
coefficients bij must be redefined to

b10 = − k1

Vo
, b11 =

k2

Vo

and so the system becomes
⎧
⎪⎪⎨

⎪⎪⎩

ẇ1 = w2 + O(3),

ẇ2 =
k2

Vo
w2

1 + 2
k1 + k2

Vo
w1w2 + O(3).

(37)

System (36) [or System (37)] have a double zero
eigenvalue.

4. Numerical Bifurcation Analysis

In this section, global bifurcations that may appear
in (10) are studied by using numerical continuation

1650028-12
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Table 1. DC microgrid parameters.

Parameter Value Normalized Value

R1 45mΩ 0.015
R2 90mΩ 0.03
L1 450 µH 0.5
L2 900 µH 1
Co 100 µF 1
Vs 380 V 1
Vth 150 V 0.39474
Imax 20A 0.15789
Pcps 1 kW 0.02078

tools, such as the software AUTO [Doedel et al.,
1998]. The bifurcation diagrams are constructed by
varying the CPL power (Pcpl) and capturing the
dynamical behavior of the voltage vo. The microgrid
parameters are given in Table 1.

The numerical values for the Takens–Bogdanov
(Sec. 3.3) are rd = 2.05299, go = 0.94319 and po =
0.235797.

The bifurcation diagrams for different values of
Rd using the software AUTO are shown in Figs. 9
to 11. Three different regions ⃝1 , ⃝2 and ⃝3 , char-
acterized by the equilibria stability, are depicted in
Fig. 9.

The following global bifurcations are identified
in Figs. 9 to 11:

• Saddle-Node of Periodic Orbits (SNPO), where
two periodic orbits (one unstable and the other
stable) arise due to the piecewise load character-
istic shown in Fig. 3.

• Boundary Equilibrium Bifurcation (BEB)
[di Bernardo et al., 2008; Pagano et al., 2011],
which occurs when the voltage (vo) drops below
Vth (see Fig. 3). This bifurcation behaves like

Fig. 9. Bifurcation diagram in (Pcpl, vo)-plane for
Rd = 2 [Ω].

Fig. 10. Bifurcation diagram in (Pcpl, vo)-plane for
Rd = 5.5 [Ω].

a saddle-node of equilibrium points bifurcation
(nonsmooth fold of equilibria).

• Homoclinic Connection (HC) occurs when the
unstable limit cycle reaches the unstable equi-
librium branch between SN and BEB, as can be
seen in Fig. 10. Basically, the unstable limit cycle
defines the attractive region of the upper stable
equilibrium point and when the voltage drops
outside this region it goes to the second stable
equilibrium point determined by the BEB. When
the HB reaches the SN a codimension-two point
is detected corresponding to a Takens–Bogdanov
bifurcation. A similar process happens when the
SNPO reaches the BEB. Figure 8 can be redrawn,
but now including the SNPO and the HC, as
shown in Fig. 12. Notice that, when the SNPO
disappears the HC appears.

The BEB occurs whenever ReqPo = Vth(Vs −
Vth), this relation can be deduced based on the equi-
libria analysis in Sec. 2. When the voltage Vo is
close to Vth there are three equilibrium points, one

Fig. 11. Bifurcation diagram in (Pcpl, vo)-plane for
Rd = 8 [Ω].
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(a) (b)

Fig. 12. Local and global bifurcation sets of codimension-two considering Po and Rd as bifurcation parameters: (a) general
picture of the bifurcations and (b) a zoom to show the Homoclinic Connection.

possible stable equilibrium, V +
o which is the solid

black line in Fig. 7 (a Hopf bifurcation can make
this branch unstable), one unstable, V −

o which is
the dashed black line and one stable equilibrium
Vo that the BEB generates, the gray line. To show
that this last equilibrium point is always stable, the
linear part of (10) in region II (see Fig. 3) is inves-
tigated using the normalized equations:

Aij =

⎛

⎜⎜⎜⎜⎝

−(r2 + 4rd) 2rd 0

rd −(r2 + rd) −1

0 1 −
(

go +
1

rth

)

⎞

⎟⎟⎟⎟⎠
.

The load parameter is go = pcps/V2
o. Notice that the

characteristic polynomial has positive coefficients,
given by

∆(λ) = λ3 + a2λ
2 + a1λ + a0,

a2 = 2r2 + 5rd +
(

go +
1

rth

)
,

a1 = 1 + req(r2 + 4rd) +
(

go +
1

rth

)
(2r2 + 5rd),

a0 = (r2 + 4rd)
[
1 +

(
go +

1
rth

)
req

]

and the condition a1 ≥ a0/a2 is always true, so the
equilibrium point is asymptotically stable.

Bifurcation diagrams in Figs. 9 to 11 must be
interpreted regarding the load power (Pcpl), which
is a bifurcation parameter, as the true power of the

system, but only in the nonlinear region of opera-
tion (region III in Fig. 3). In the other regions it is
just a parameter related to the resistance, but it is
not the power consumed by the load.

Although the focus of this paper is on the bifur-
cation analysis of system (1) considering the droop
resistance, Rd, and the total power, Po, as the main
bifurcation parameters, other parameters of the
reduced model can also affect the system dynam-
ics. The line inductance (remember that L2 = 2L1)
and the equivalent capacitor (Co) can affect the
Hopf bifurcation, as the power Po is varied, but
not the other bifurcations. To show the relation
between these parameters and the Hopf bifurca-
tion, codimension-two bifurcation sets are presented
in Figs. 13 and 14 for (L1, Po) and for (Co, Po),
respectively.

Fig. 13. Codimension-two bifurcation set showing the Hopf
bifurcation, regarding Po and L1 as bifurcation parameters.
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Fig. 14. Codimension-two bifurcation set showing the Hopf
bifurcation, regarding Po and Co as bifurcation parameters.

In the former numerical analysis using AUTO,
Eqs. (2) and (3) that are continuous but with dis-
continuous derivatives, are approximated to the fol-
lowing equations

icpl =
Pcpl

vo

(
0.5 + 0.5 tanh

vo − Vth

ϵ

)

+
vo

Rth

(
0.5 − 0.5 tanh

vo − Vth

ϵ

)
,

icps = −Pcps

vo

(
0.5 + 0.5 tanh

vo − Vpv

ϵ

)

− Imax

(
0.5 − 0.5 tanh

vo − Vpv

ϵ

)
,

where ϵ must be a small value. Nonsmooth and
smooth representations must have similar behavior
as the parameter ϵ → 0.

5. Full Microgrid Model

The aim of this section is to compare numerically
the dynamical behavior of the reduced model, con-
sidered in previous sections, with the full model of
the microgrid system. The electrical circuits cor-
responding to the power converters of the studied
microgrid are shown in Fig. 2 displaying its internal
parameters.

The averaged equations of the AC-DC source,
using the dq0 transform (the power invariant ver-
sion), are given by

Lac
did
dt

= ωLaciq − udv1 + Vd,

Lac
diq
dt

= −ωLacid − uqv1,

C1
dv1

dt
= udid + uqiq − i1,

with the control laws expressed as

ud =
Vd + ωLaciq + Ki

1(id − Id,ref) + Ki
2ξd

v1
,

uq =
−ωLacid + Ki

1iq + Ki
2ξq

v1
,

Id,ref =
v1

Vd
{i1 − Kv

1[v1 − (Vs − Rdi1)] − Kv
2ξ1}

and the following terms being the output of the inte-
gral action presented in the control laws:

dξd

dt
= id − Id,ref ,

dξq

dt
= iq,

dξ1

dt
= v1 − (Vs − Rdi1).

The voltage v1 is the AC-DC source output voltage,
the voltage Vd is the input direct-axis AC voltage,
and {id, iq} are the {direct, quadrature}-axes AC
currents, all properly transformed to DC signals.
The controller gains are Ki

j for the current loop
and Kv

j for the voltage loop, with j ∈ {1, 2}.
For the DC-DC source, the equations are

Lbat
dibat

dt
= −v2(1 − ubat) + Vbat,

C2
dv2

dt
= ibat(1 − ubat) − (i2 − i1),

with the following control laws

ubat = 1 −
Vbat + Kbat

p (ibat − Ibat,ref)
v2

,

Ibat,ref =
v2

Vbat
{(i2 − i1)

−Kv
1[v2 − (Vs − Rd(i2 − i1))] − Kv

2ξbat}

and

dξbat

dt
= v2 − (Vs − Rd(i2 − i1)).

The voltage v2 is the DC-DC source output voltage,
the voltage Vbat is the battery voltage, and the con-
troller gains are Kbat

p for the current control loop
and Kv

j for the voltage control loop.
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Table 2. AC-DC and DC-DC source parameters.

Parameter Value Parameter Value

Lac 750 µH Lbat 1mH
C1 500 µF C2 500 µF
Vd 122.475 V Vbat 100 V

Ki
1 1.999 Kbat

p 1.25664
Ki

2 2664.79 Kv
1 0.0444221

ω 377 rad/s Kv
2 1.97392

The equations of the load model corresponding
to a controlled power converter with a resistive load
are given by

Ll
dicpl

dt
= vo(−K0icpl − K1vcpl − K2ξcpl) − vcpl,

Cl
dvcpl

dt
= icpl −

vcpl

Ro
,

dξcpl

dt
= vcpl − Vth.

Notice that, the control law used is the usual state
feedback control with an integral action (ξcpl), and
the gains of the controller are K0, K1 and K2. The
load input voltage is vo, where the output voltage
is vcpl. The inductor current is icpl, and Ro is a
resistive load. The reference signal for the load is
Vth, which is defined in Table 1.

The PV system equations are given by

Cpv
dvpv

dt
= ipv(vpv) − iLp,

Lpv
diLp

dt
= vpv − (1 − upv)vo,

where vpv is the voltage on the capacitor in the
input terminals of the PV panel, ipv is the PV panel
current and iLp is the inductor current. The control
law for the PV system is a simple static nonlinear
equation, given by

upv = 1 −
vpv + Kpv(iLp − Imppt)

vo
,

with Imppt being the reference signal generated
by the Maximum Power Point Tracking (MPPT)

Table 3. CPS and CPL parameters.

Parameter Value Parameter Value

Ll 1 mH Lpv 1mH
Cl 100 µF Cpv 10µF
K0 0.145968 Kpv 6
K1 0.0191522 K2 156.663

Fig. 15. Bifurcation diagram in (Pcpl, vo)-plane for Rd = 2
[Ω], valid for the full microgrid model in the power range from
9 [kW] to 18 [kW] (cf. Fig. 9).

system, and Kpv the controller gain. Note that
Fig. 2 shows the line impedance between the PV
and the power converter, but this impedance is
neglected for the full model.

The numerical values used for the AC-DC
source and DC-DC source parameters are shown in
Table 2, and for the CPS and CPL are shown in
Table 3.

In order to show that the reduced model can
capture the essential qualitatively dynamic behav-
ior of the microgrid, the bifurcation diagram for the
full model is shown in Fig. 15. Notice that HB and
SNPO points are close for both models (cf. Fig. 9).

6. Shortcomings of the Proposed
Reduced Model

One of the problems with the reduced model is the
parameter Rd, because this resistance is not linked
to a physical element. It is not a resistor but instead
it is an effect due to the voltage source control sys-
tem, which has some dynamics that are not cap-
tured by the proposed model. The advantage of this
approach compared to a physical resistor is that it
does not dissipate any energy. The Hopf bifurcation
is affected by this dynamic and it is expected that
the limit cycle occurs for a lower value of the power
drawn by the load. To compensate for the lack of
dynamics linked to Rd, the load is modeled as CPL,
which is a worst-case scenario modeling. If the load
has fast dynamics, the error between the proposed
reduced model and the full microgrid model will
be minimum, but notice that several problems can
occur if one wants to use a partial reduced model,
for instance, using a complete model for the sources
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but still using a CPL model for the loads. This
approach will generate a considerably large error.

Another issue where the reduced model can
exhibit problems is the presence of saturation in the
voltage source control loop. It is not possible to keep
increasing the droop gain (Rd) without avoiding the
possibility of saturating the control loop, and when
this happens, the occurrence of a Hopf bifurcation
that is not linked to the one presented along this
paper is expected. The SNPO bifurcation is highly
dependent on the overall system dynamics, and with
minor changes in the gains of the source controller,
it is possible to change its value and even to shrink
the region between the SNPO and the Hopf bifur-
cation, so that the original subcritical Hopf bifur-
cation can become almost a supercritical one.

In order to show more in depth the effects of the
disregarded dynamics, bifurcation diagrams corre-
sponding to the full microgrid model and for the
parameters Kv

1 and Kv
2 are presented in Figs. 16

and 17. For lower values of Kv
1, the reduced model

fits well, but by increasing its value, a subcritical
Hopf bifurcation will appear (this is a new Hopf
bifurcation, not linked to the one shown in Fig. 15).
Note that as the gain is increased, the stable limit
cycle suffers another bifurcation, a Hopf of Periodic
Orbit (HPO), which is a Neimark–Sacker bifurca-
tion when the Poincaré map is applied to the peri-
odic orbit. The second parameter (Kv

2) presents a
similar diagram, but now the Hopf bifurcation is
of a supercritical type. As these parameters do not
appear in the proposed model, they must be in the
stable range of the equilibrium point, so the reduced
model can capture the microgrid dynamics properly.

The codimension-two bifurcation set showing
the Hopf bifurcation (cf. Fig. 15) for Ki

1 and
Kbat

p , the current control loop proportional gain

Fig. 16. Bifurcation diagram in (Kv
1, vo)-plane for

Rd = 2 [Ω].

Fig. 17. Bifurcation diagram in (Kv
2, vo)-plane for

Rd = 2 [Ω].

Fig. 18. Codimension-two bifurcation set showing the Hopf
bifurcation, regarding Pcpl and Ki

1 as the bifurcation
parameters.

of the AC-DC source and DC-DC source respec-
tively, can be seen in Figs. 18 and 19. These results
show a strong interaction between the sources of
the current control loop parameters and the Hopf
bifurcation.

Fig. 19. Codimension-two bifurcation set showing the Hopf
bifurcation, regarding Pcpl and Kbat

p as the bifurcation
parameters.
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Fig. 20. Simulation of the DC microgrid showing the voltage vo and the currents i1 and i2 in the main three operating
regions (see the encircled numbers 1, 2 and 3 in Fig. 9) valid for Rd = 2 Ω.

7. Simulation Results

The aim of this section is to validate the bifurca-
tion analysis done in the previous sections through
simulation results obtained from the commercial
package PSIM. It is noteworthy to remark that
these results were obtained considering the whole
model of the proposed DC microgrid. Note that
there are three models presented in this paper: (a)
the reduced model; (b) full model, used in Sec. 5,
which is based on the average model for the power
converters; (c) instantaneous model used to obtain
the numerical PSIM simulations, which is based on
switching models for all the power converters with
discrete controllers. Also, it must be stressed that
the simulation results are qualitatively equivalent
with the ones obtained by applied numerical con-
tinuation methods on the reduced microgrid model.

7.1. Time-domain response
analysis

Time-domain charts corresponding to the voltage
vo(t) and the currents i1(t), i2(t) for different load
power steps are depicted in Fig. 20. The numbers
⃝1 , ⃝2 , ⃝3 in Fig. 20 denote the different regions
characterized in Fig. 9.

As shown in Fig. 20, until t = 0.4 [s], the system
equilibrium point is stable (region ⃝1 ) with Pcpl =
12.85 [kW]. After a step in the load power (Pcpl = 15
[kW]) the equilibrium point becomes unstable and
the voltage vo begins to oscillate (region ⃝2 ). At
t = 0.7 [s], a large step in the load power is applied

(Pcpl = 37.5 [kW]), and a new stable equilibrium
point appears due to the BEB (region ⃝3 ). Clearly,
region ⃝1 in Fig. 20 is the stable operating region
and the other cases correspond to undesirable oper-
ating regimens that must be avoided using adequate
protection mechanisms. The shape of the limit cycle
can be seen in Fig. 21, which shows that the peri-
odic oscillation contains the fundamental compo-
nent and other harmonic frequencies.

In order to show the SNPO bifurcation
(Fig. 22), a step in the load power at t = 0.4 [s] is
applied so that the system enters the region where it
should oscillate. In the sequence, at t = 0.5 [s], the
power is reduced to a level where the equilibrium
point should be stable. Observing with care, one will
notice that the Hopf bifurcation in Fig. 20 happens

Fig. 21. The limit cycle waveform corresponding to the sim-
ulation shown in Fig. 20, captured from t = 0.5 [s] to 0.6 [s],
for Rd = 2 [Ω].
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Fig. 22. Simulation showing the SNPO bifurcation for steps
in the CPL power (PI = 9 [kW], PII = 15 [kW], PIII = 12.5
[kW], PIV = 13.2 [kW]), valid for Rd = 2 [Ω].

when the load power reaches Pcpl = 15 [kW], but
in Fig. 22, when the system is already oscillating,
one must go below Pcpl = 12.5 [kW] to stop the
oscillations. The region between Pcpl = 12.5 [kW]
and Pcpl = 15 [kW] have two limit cycles, an inner
unstable and an outer stable, which was foreseen by
the reduced model. This is a parametric hysteresis,
as the value where the voltage starts to oscillate
when the equilibrium point is stable is different from

the value when the system is already oscillating and
the power is decreased so the equilibrium point is
stable.

The case where the droop resistance is big
enough so no Hopf bifurcation appears (Rd = 8 [Ω])
is shown in Fig. 23. At t = 0.3 [s], the CPL power
suffers a step from Pcpl = 4.5 [kW] to Pcpl = 9 [kW],
and at t = 0.5 [s] another step of Pcpl = 10 [kW] is
applied, where the system undergoes a BEB.

The reduced model indicates that the presence
of the PV source makes the microgrid more sta-
ble. The effects of the PV source in the voltage vo

and currents i1 and i2, as the PV power is var-
ied can be seen in Fig. 24, for the case when the
CPL power is very low. When the CPL power is
close to the Hopf bifurcation, any variation on the
PV power can make the system oscillate, as shown
in Fig. 25, where a step change in the CPS power
(Pcps) was applied at t = 0.5 [s]. The oscillatory
behavior starting close to t = 0.7 [s] is due to the
instability generated by the Hopf bifurcation, and
no other step changes were made for this simula-
tion. Close to t = 0.7 [s] the dc-dc power converter
duty cycle (ubat waveform in Fig. 25) saturates only
on the upper value, but not on the lower value.
This saturation leads to an asymmetrical bus volt-
age waveform which decreases its average value, but
not the average voltage on the CPL, and this causes
an increase in the average CPL power.

The AC currents of the AC-DC source can be
seen in Fig. 26 for the three main operating regions
(cf. Fig. 9), which shows that the control can make

Fig. 23. Simulation of the whole DC microgrid showing the voltage vo and the currents i1 and i2 valid for Rd = 8 [Ω].
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Fig. 24. Simulation of steps in the PV power source (CPS) showing the voltage vo, the powers Pcpl and Pcps, and the currents
i1 and i2, valid for Rd = 2 [Ω].

Fig. 25. Simulation of a step in the PV power source (Pcps) at t = 0.5 [s], showing the bus voltage vo, the DC-DC power
converter duty cycle ubat, and the powers Pcpl and Pcps, valid for Rd = 2 [Ω].
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Fig. 26. Simulation of the whole DC microgrid showing (a) the three-phase AC grid currents from the AC-DC voltage source
and (b) AC grid voltage and current for only phase a.

the power factor almost unitary when the equilib-
rium point is stable.

As a practical rule the value of Rd can be chosen
between 2 [Ω] and 3 [Ω]. Greater values, although
can increase the power range where the equilibrium
point is stable, can decrease the voltage Vo away
from the desired voltage Vs (380 [V] in the microgrid
under study).

8. Conclusion

This paper addresses the effects of the droop con-
trol resistance (Rd) on the dynamical behavior of
a DC microgrid. A case study was analyzed using
standard local bifurcation analysis and numerical
continuation methods. The main contribution of
this work is a codimension-two bifurcation analy-
sis of a small DC microgrid under droop control,
considering the droop control gain and the power
processed by the load as bifurcation parameters. In
this sense, a codimension-two bifurcation set allows
us to understand the complex dynamical behav-
ior that this DC microgrid can exhibit and, at the
same time, leads to practical rules for choosing the
droop gain (Rd) in order to achieve a robust droop
control design for a desired power range. Further-
more, the existence of local bifurcations of equilib-
rium points was proved from a theoretical frame-
work using a low order model to characterize the
complex dynamical behavior due to the interaction
between sources, loads and the impedance trans-
mission lines. The proposed reduced model captures

qualitatively the essence of the microgrid dynamics
as shown by numerical simulations.

Acknowledgments

This work was developed within the R&D Program
framework of Tractebel Energia S.A. according to
the Brazilian Electrical Energy National Agency
(ANEEL) regulation.

References

Boroyevich, D., Cvetkovic, I., Burgos, R. & Dong, D.
[2013] “Intergrid: A future electronic energy net-
work?” IEEE Trans. Emerg. Sel. Topics Power Elec-
tron. 1, 127–138.

di Bernardo, M., Pagano, D. J. & Ponce, E. [2008] “Non
hyperbolic boundary equilibrium bifurcations in pla-
nar Filippov systems: A case study approach,” Int. J.
Bifurcation and Chaos 8, 1377–1392.

Doedel, E. J., Champneys, A. R., Fairgrieve, T. F.,
Kuznetsov, Y. A., Sandstede, B. & Wang, X. [1998]
Auto 97 : Continuation and Bifurcation Software for
Ordinary Differential Equations (with Homcont).

Dragicevic, T., Guerrero, J. M., Vasquez, J. C. &
Skrlec, D. [2014] “Supervisory control of an adaptive-
droop regulated DC microgrid with battery manage-
ment capability,” IEEE Trans. Power Electron. 29,
695–706.

Du, W., Zhang, J., Zhang, Y. & Qian, Z. [2013] “Stabil-
ity criterion for cascaded system with constant power
load,” IEEE Trans. Power Electron. 28, 1843–1851.

Gavagsaz-Ghoachani, R., Martin, J.-P., Pierfederici, S.,
Nahid-Mobarakeh, B. & Davat, B. [2013] “DC power

1650028-21

In
t. 

J. 
Bi

fu
rc

at
io

n 
Ch

ao
s 2

01
6.

26
. D

ow
nl

oa
de

d 
fro

m
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 T

H
E 

U
N

IV
ER

SI
TY

 O
F 

N
EW

 S
O

U
TH

 W
A

LE
S 

on
 0

3/
10

/1
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



March 3, 2016 9:56 WSPC/S0218-1274 1650028

E. Lenz et al.

networks with very low capacitances for transporta-
tion systems: Dynamic behavior analysis,” IEEE
Trans. Power Electron. 28, 5865–5877.

Guckenheimer, J. & Holmes, P. [1983] Nonlinear
Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields (Springer).

Guerrero, J. M., Vasquez, J. C., Matas, J., de Vicua,
L. G. & Castilla, M. [2011] “Hierarchical control of
droop-controlled AC and DC microgrids — A general
approach toward standardization,” IEEE Trans. Ind.
Electron. 58, 158–172.

Kuznetsov, Y. [2004] Elements of Applied Bifurcation
Theory, 3rd edition (Springer).

Lu, X., Guerrero, J. M., Sun, K. & Vasquez, J. C.
[2014] “An improved droop control method for DC
microgrids based on low bandwidth communication
with DC bus voltage restoration and enhanced cur-
rent sharing accuracy,” IEEE Trans. Power Electron.
29, 1800–1812.

Magne, P., Marx, D., Nahid-Mobarakeh, B. & Pierfed-
erici, S. [2012] “Large-signal stabilization of a DC-
link supplying a constant power load using a virtual
capacitor: Impact on the domain of attraction,” IEEE
Trans. Ind. Appl. 48, 878–887.

Onwuchekwa, C. & Kwasinski, A. [2010] “Analysis of
boundary control for buck converters with instan-
taneous constant-power loads,” IEEE Trans. Power
Electron. 25, 2018–2032.

Pagano, D. J., Ponce, E. & Torres, F. [2011] “On dou-
ble boundary equilibrium bifurcations in piecewise
smooth planar systems,” Qual. Th. Dyn. Syst. 10,
277–301.

Planas, E., de Muro, A. G., Andreu, J., Kortabarria, I. &
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